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Abstract

This report describes Team Caltech’s technical approachiesudts for the 2007 DARPA Urban
Challenge. Our primary technical thrusts were in three af@asnission and contingency manage-
ment for autonomous systems; (2) distributed sensor fusi@pping and situational awareness;
and (3) optimization-based guidance, navigation and obnt®ur autonomous vehicle, Alice,
demonstrated new capabiliites in each of these areas anel @pproximate 300 autonomous miles
in preparation for the race. The vehicle completed 2 of thedification tests, but did not ulti-
mately qualify for the race due to poor performance in thegingrtests at the National Qualifying
Event.

1 Introduction and Overview

Team Caltech was formed in February of 2003 with the goal ofgdésy a vehicle that could
compete in the 2004 DARPA Grand Challenge. Our 2004 vehicle, Bainpleted the qualifica-
tion course and traveled approximately 1.3 miles of the tdI2-2004 course. In 2004-05, Team
Caltech developed a new vehicle—Alice, shown in Figure 1—aigipate in the 2005 DARPA
Grand Challenge. Alice utilized a highly networked contrgdtem architecture to provide high
performance, autonomous driving in unknown environmenke system successfully completed
several runs in the National Qualifying Event, but encortedea combination of sensing and con-
trol issues in the Grand Challenge Event that led to a crifaihlre after traversing approximately
8 miles.

As part of the 2007 Urban Challenge, Team Caltech developedemwmology for Alice in
three key areas: (1) mission and contingency managemeatifonomous systems; (2) distributed
sensor fusion, mapping and situational awareness; angf{i&iaation-based guidance, navigation
and control. This section provides a summary of the cap@silof our vehicle and describes the
framework that we used the 2007 Urban Challenge.

*Corresponding author: murray@cds.caltech.edu
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Figure 1: Alice, Team Caltech’s entry in the 2007 Urban Challenge.

For the 2007 Urban Challenge, we built on the basic architechat was deployed by Caltech
in the 2005 race, but provided significant extensions anamnajditions that allowed operation
in the more complicated (and uncertain) urban driving emnnent. Our primary approach in the
desert competition was to construct an elevation map ofdtrait sounding the vehicle and then
convert this map into a cost function that could be used ta pldigh speed path through the
environment. A supervisory controller provided continggmanagement by identifying selected
situations (such as loss of GPS or lack of forward progress)raplementing tactics to overcome
these situations.

To allow driving in urban environments, several new chakshhad to be addressed. Road
location had to be determined based on lane and road feasiaéis and moving obstacles must
be avoided, and intersections must be successfully nadgat/e chose a deliberative planning
architecture, in which a representation of the environnweas built up through sensor data and
motion planning was done using this representation. A 8aamt issue was the need to reason
about traffic situations in which we interact with other &g or have inconsistent data about the
local environment or traffic state.

The following technical accomplishments were achievedaaisqd this program:

1. A highly distributed, information-rich sensory systeraseveloped that allowed real-time
processing of large amounts of raw data to obtain informatsmuired for driving in urban
environments. The distributed nature of our system allogaey integration of new sensors,
but required sensor fusion in both time and space acrossriéodted set of processes.

2. A hierarchical planner was developed for driving in urlearironments that allowed com-
plex interactions with other vehicles, including followinpassing and queuing operations.
A rail-based planner was used to allow rapid evaluation ofienaers and choice of paths
that optimized competing objectives while insuring saferagion in the presence of other
vehicles and static obstacles.

3. Acanonical software structure was developed for useaiplanning stack to insure that con-
tingencies could be handled and that the vehicle would roatto make forward progress
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towards its goals for as long as possible. The combinatioa diective/response mech-
anism for intermodule communication and fault-handlingoaithms provide a rich set of
behaviors in complex driving situations.

The features of our system were demonstrated in approxyr2@@ miles of testing performed in
the months before the race, including the first known intewadetween two autonomous vehicles
(with MIT, in joint testing at the EIl Toro Marine Corps Air Stan).

A number of shortfalls in our approach led to our vehicle gadisqualified for the final race:

1. Inconsistencies in the methods by which obstacles wardléa that led to incorrect behav-
ior in situations with tight obstacles;

2. Inadequate testing of low-level feature extraction opdines and the corresponding fusion
into the existing map;

3. Complex logic for handling intersections and obstaclaeswas difficult to modify and test
in the qualification event.

Despite these limitations in our design, Alice was able tdquen well on 2 out of the 3 test areas
at the NQE, demonstrating the ability to handle a varietyashplex traffic situations.

This report is organized as follows: Section 2 provides & legel overview of our approach
and system architecture, including a description of sontbekey infrastructure used throughout
the problems. Sections 3-5 describes in the main softwdrgystems in more detail, including
more detailed descriptions of the algorithms used for $jpaeisks. A description of the primary
software modules used in the system is included. Section\edes a summary of the results from
the site visit, testing leading up to the NQE and the team’fopmance in each of the NQE tests.
Finally, Section 7 summarizes the main accomplishmenteefptoject, captures lessons learned
and describes potential transition opportunities. AppeAdorovides a listing of additional mod-
ules that are referenced in the report along with a shortrgién of the module.

2 System Overview

2.1 System Architecture

A key element of our system is the use of a networked contrstiesys (NCS) architecture that
we developed in the first two grand challenge competitionsldBig on the open sourc8pread
group communications protocol, we have developed a modofaware architecture that provides
inter-computer communications between sets of linkedgsses [1]. This approach allows the
use of significant amounts of distributed computing for sepsocessing and optimization-based
planning, as well as providing a very flexible backbone foildimg autonomous systems and
fault tolerant computing systems. This architecture alkawa us to include new components in
a flexible way, including modules that make use of planning sensing modules from the Jet
Propulsion Laboratory (JPL).
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Figure 2: Systems architecture for operation of Alice in the 2007 Challefipe. sensing subsystem is
responsible for building a representation of the local environment assirgathis to the navigation subsys-
tems, which computes and commands the motion of the vehicle. Additional furdtidegrovided for
process and health management, along with data logging and simulation.

A schematic of the high-level system architecture that welbped for the Urban Challenge
is shown in Figure 2. This architecture shares the same lynatpapproach as the software used
for the 2005 Grand Challenge, but with three new elements:

Canonical Software Architecture for mission and contingemeynagementThe complexity and
dynamic nature of the urban driving problem make centrdlg®eal and contingency management
impractical. For the navigation functions of our system, vawe developed a decentralized ap-
proach where each module only communicates with the modlitestly above and below it in
the hierarchy. Each module is capable of handling the faulits own domain, and anything the
module is unable to handle is propagated “up the chain” tigilcorrect level has been reached to
resolve the fault or conflict. This architecture is desatibemore detail in Section 5 and builds
on previous work at JPL [2, 3, 7].

Mapping and Situational AwarenesBhe sensing subsystem is responsible for maintainingdoth
detailed geometric model of the vehicle’s environment, el as a higher level representation of
the environment around the vehicle, including knowledgeno¥iing obstacles and road features.
It associates sensed data with prior information and bastd@ structured representation of the
environment to the navigation subsystem. The mapping neadaintains a vectorized representa-
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tion of static and dynamic sensed obstacles, as well astddtame lines, stop lines and waypoints.
The map uses a 2.5 dimensional representation where thd 8gtojected into a flat 2D plane,

but individual elements may have some non-zero height. Bacbked element is tracked over time
and when multiple sensors overlap in field of view, the eleimare fused to improve robustness to
false positives as well as overall accuracy. These methed$escribed in more detail in Section 3.

Route, Traffic and Path Plannind he planning subsystem determines desired motion of the sy
tem, taking into account the current route network and msgoals, traffic patterns and driving
rules and terrain features (including static obstaclegjs $ubsystem is also responsible for pre-
dicting motion of moving obstacles, based on sensed datacattinformation, and for imple-
menting defensive driving techniques. The planning probig divided into three subproblems
(route, traffic, and path planning) and implemented in sseanodules. This decomposition was
well-suited to implementation by a large development teemwesmodules could be developed and
tested using earlier revisions of the code base as well ag gsnulation environments. Additional
details are provided in Section 4.

2.2 Project Modifications

The overall approach described in our original proposal teatinical paper were maintained
through the development cycle. After the site visit, thenplag subsystem was modified due to
problems in getting our original optimization-based saitavto run in real-time. Specifically, the
NURBS-based dynamic planner described in the technical pepereplaced by a graph search-
based planner. At a high level, these two planner both getepath that obeyed the currently
active traffic rules, avoided all static and dynamic obstschnd optimized a cost function based
on road features and the local environment. However, tihdaged planner separated the spatial
(path) planning problem from the temporal (velocity) plengyproblem and made use of a partially
pre-computed graph to allow a coarse plan to be developsdaeackly. The revised planner is
described in more detail in Section 4.2.

In addition, the internal structure of the planning staclsweorganized to streamline the pro-
cessing of information and minimize the number of intermafes of the planner. The probabilistic
finite state machine used to estimate traffic state was reghtaith a simpler finite state machine
implementation.

Other differences from the technical paper include:

e The final sensor suite included two RADAR units mounted on spgan-tilt units and no
IR camera. This approach was used to allow long-range dleteat vehicles at intersection
(one RADAR was pointed in each direction down the road).

e Rather than using separate obstacles maps from individuBlARs and fusing them, a
single algorithm that processed all LADAR data was devedopEhis approach improved
robustness of the system, especially differentiatingcséatd moving vehicles.

e The sensor fusion algorithms for certain objects were mdk@u the map object directly
into the planner. This allowed better spatio-temporaldnsand persistence of intermittent
objects.
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Figure 3: Screen shots from SensViewer (left) and MapViewer (right).

3 Sensing Subsystem

The sensing subsystem was developed from approaches feingemapping and situational
awareness that built off past work at Caltech/JPL. As can ba f®m Figure 2, there are es-
sentially three layers to the sensing subsystem. The floems@y data begins with the feeders
in function block F4 and travels (via the SensNet interfaodghe perceptors in function block F5.
The perceptors then apply their respective perceptiorrithgas and pass the perceived features
to the map in function block F2, where fusion and classifozais performed. In short, we can
classify these layers as follows:

Sensing Hardware & FeederJhis layer consists of the low-level drivers and feedeet thake
the raw sensed data available to the perception algoritlitash sensor is identified by a unique
sensor-1D to keep things organized and allows the ease ofpocating new sensors as they get
introduced.

Perception SoftwareThis layer consists of the perception algorithms that takihe raw sensed
data from the feeders and apply detection and tracking t@aebetd features from the data; such
features include lines on the road, static obstacles,isalée hazards and moving vehicles.

Fused Map This final layer consists of the vectorized representaiotme world which we refer
to as the “map”. The map receives all the detected and trdeleddres that have been extracted at
the perceptor level and fuses them to form a vectorized migdae which is used by the planners.

Figure 3 contains screen shots illustrating the featuréseofensing systems. The left figures
shows the direct data from the various sensors represenge8D view. Images from the short and
medium range cameras are shown at the top of the figure, arldADAR, RADAR and stereo
obstacle data are shown below. This information is proeckbgehe perceptors, resulting in the
fused data shown in the right figure. In this representatidostacles are classified as static or
moving. Lane data (not shown) is also stored in the map.
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The following subsections address each layer of the sessibgystem, with detailed descrip-
tions of associated modules that were respectively usedgltire qualifying events at the NQE.

3.1 Sensing Hardware & Feeders

SensNet. Data from feeders is transmitted to perceptors using aaigesi high-bandwidth, low-
latency communication package called SensNet. SensNegtisection model is many-to-many,
such that each feeder can supply multiple perceptors artdceptor can subscribe to multi-
ple feeders. Perceptors can therefore draw on any comtamatisensors and/or sensor modal-
ities to accomplish their task (e.g., a road perceptor canhagh forward-facing cameras and
forward-facing LADARS). SensNet will also choose an appiaterinterprocess communication
method based on the location of the communicating modules.nedules on the same phys-
ical machine, the method is shared memory; for modules dardiit machines, the method is
Spread/TCP/Ethernet.

LADAR Feeder. The LADAR-feeder module works by interfacing with a varietfyl@ser range
finders using existing drivers which had been written (orrig@n) from previous races. For this
particular race, the laser range finders we had used werel@t¢ [SVIS-221, the SICK LMS-
291, and the RIEGL LMS-Q120. Depending on the sensor-ID gigpacified as a command line
argument to the module), this module calls the correct dtivénterface with the desired scanner
and broadcasts the resulting scan measurements acro$$efenlbe range scan is referenced in
the sensor frame yet tagged with the vehicle state and apatepnatrix transforms to allow for
flexibility in transforming the range points into any desifeame (i.e. sensor, local, vehicle).

Stereo Feeder. The stereo-feeder module works by reading in the raw images &ll four
cameras (two sets of stereo-camera pairs: one long-baseiothone medium-baseline). With the
known baselines between cameras in a given stereo-camiera pksparity and range value is
calculated for all corresponding pixels in both images gsiBL stereo software. Finally, the raw
image with disparity and range values is then sent acrossN&tno all listening modules.

RADAR Feeder. The radar-feeder module works by interfacing with a TRW AC2Q0&ruise
RADAR unit and publishing the data to SensNet. The AC20 canrtegoto ten “targets” (in-
termittent, single-cycle returns) and ten “tracks”—imtaty tracked objects—at a refresh rate of
26 Hz. The internal tracking is fairly accurate, and whenpsied with the vehicle’s yaw rate and
velocity, can compensate for its own motion. It filters oattisinary returns, making it ideal for a
car perceptor.

PTU Feeder. The Pan-Tilt-Unit (PTU) feeder is the controlling softwdhat receives panning

and tilting commands for one of two pan-tilt unit devices be vehicle: the Amtec Robotics Pow-
ercube pan-tilt-unit or the Directed Perception PTU-D46-The panning and tilting commands
can be specified in one of two ways:

e specifying pan-tilt angles in the PTU reference frame;

e specifying a point in the local-frame such that the linesidé vector of the pan-tilt unit
intersects that point (i.e. such that the pan-tilt-unibigking at that point in space).
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There are elements of this module that make it work like adeadd elements that make it work
like an actuator. The module is a feeder in the sense thahitraally broadcasts its pan and tilt
angles across SensNet. It is an actuator in the sense tiséitd for messages that command a
movement and executes those commands.

3.2 Perception Software

Line/Road Perceptor. There were essentially two line perceptors that were writta the
DARPA Urban Challenge. The first line perceptor was identifiedhe “Line Perceptor” mod-
ule and by an abuse of notation, the second line perceptoulmadas identified as the “Road
Perceptor” module. A description of each module is provideldw.

The Line Perceptor takes in raw sensory image data from ¢inecstamera feeders and applies
a perception algorithm that filters out line features (e@pdines, lane lines, and parking-lane
lines) and sends them to the Map module. The details of ttweithigh are outlined in the following
steps:

1. The image is transformed into Inverse Perspective Mappiew (IPM) given the camera
external calibration parameters. IPM works by assumingahae is a flat plane, and using
the camera intrinsic (focal length and optical center) axtdresic (pitch angle, yaw angle,
and height above ground) parameters to take a top view obt This makes the width of
any line uniform and independent of its position in the imagel only dependent on its real
width in reality. It also removes the perspective effectflsat lines parallel to the optical
axis will be parallel and vertical.

2. Spatial filtering is then done on the IPM image, using siiglerfilters, to detect horizontal
lines (in case of stop lines) or vertical lines (in case okEn The filters are Gaussian in
one direction and second derivative of Gaussian in the peipelar direction, which is best
suited to detect light line on dark background.

3. Thresholding is then performed on the image to extrachitjeest values from the filtered
image. This is done be selecting the highigbtpercentile of values from the image.

4. Line grouping is done on the thresholded image, usingedh

e Hough transform: for detecting straight lines;
e RANSAC lines: for detecting straight lines;

e Histograms: a simplified version of Hough transform for détey only horizontal and
vertical lines;

e RANSAC splines: for fitting splines to thresholded image.

The Hough transform approach is the default mode of operatiuch provides flexibility

in detecting lines of any orientation or position in the iraad he orientations are searched
betweent- 10 degrees of horizontal or vertical, which allows for lapatfires that are not
orthogonally aligned to the vehicle to be detected.
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5. Validation and localization is then performed on detédiges and splines to better fit the
image and to get end-points for the lines before finally sempdo the Map module. We
isolate the pixels belonging to the detected stop line uBigenham’s line drawing algo-
rithm, and then convolve a smoothed version of the pixelesbn the line with two kernels
representing a rising and a falling edge, and getting thetpa@f maximum response. The
detected lines and splines are transformed back to thenatighage plane, and then to the
local frame, which are then sent to the Map module.

The Road Perceptor module has a very similar architectuteeth.ine Perceptor module de-
scribed above and can be briefly summarized in the followawgs steps:

1. The first step loads images from the left camera taken fhenstiereo-feeder modules, which
can either be from the middle baseline pair or the longerlimespair. The default setting
was to use the middle baseline pair.

2. The next step applies some pre-processing to enhancestthed images (e.g. removing the
hood of the vehicle from the bottom of the image and color s&pn for white vs. yellow
lines).

3. Edge detection is next applied to the enhanced image vigaidne by applying an operator
that extracts the main road hints in the form of edges or aostfsom the images.

4. Line extraction is then applied to the detected edges ti@m&xcandidate lines using the
probabilistic Hough transform.

5. Line association then classifies the extracted lines ad gjoes or bad lines according to
their color, geometrical properties, and relation withestlines.

6. Perspective Translation is then applied to the validslinenuch the same way described for
the Line Perceptor module.

7. Line output is then executed on the translated lines, méie parameterized and broken into
points then sent to the Map module.

Additional details on this algorithm are given in [6].

LADAR-Based Obstacle Perceptor. The LADAR-based Obstacle Perceptor has two main threads,
preprocessing and tracking. The preprocessing threadlsige of retrieving the latest laser range
data (from all available LADARS) from the SensNet module aaddforming it to the local frame.
Once in the local frame, the data is then incorporated intmuple of occupancy grid maps:

e Static MapThe static map is a map of free and occupied space repredgneedis. All cells
are first initialized to a negative value and when the acetairns are read in, corresponding
cells are given a positive value. This map is used for graypioisy obstacles like bushes
and berms in an easy manner.

e Road MapThe road map contains a map of large smooth surfaces likddg tmad (stored
as elevation data).
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e Groundstrike MapThe “groundstrike” map has cumulative information abouiatwareas
are likely to be LADAR scans generated by striking the groufitie data in this map is
generated primarily from the elevation data gathered fioerstveeping pan-tilt unit.

The second thread, the tracking thread, relies on discratking of segments using a vec-
torized representation instead of a grid-based represamteFor each LADAR, every incoming
scan is segmented based on discontinuities (as a functidistahce) and evaluated as a potential
“groundstrike” based on the groundstrike probabilitieg®tonstituent points. If a segment is ac-
cepted, it is associated with existing tracked segmentsienarack is created. The function of the
tracking is primarily to detect dynamic obstacles, sincergthing not dynamic is treated equiva-
lently as static. Thus tracks are weighted by how likely theyto be cars (reflectivity, size, etc).
The tracking just uses a standard Kalman filter for the cahttbough extra care is taken when
initializing tracks to avoid misidentifying changing geetry as a high initial velocity. To combine
the individual LADAR scans, each new set of scans is brokeimigpclusters of points (based on
point-point distance), again to merge noisy obstacles am@ large blob. For each cluster, the
velocity is computed as the weighted average of each passsciated segment track, weighted
by the status (confidence) of that track. Basic nearest dbsdasociation is done between scans;
this is to maintain a consistent obstacle ID throughout ifle¢irhe of a given obstacle. Dynamic
obstacle classification occurs at this level, and is detezthby the distance an obstacle has moved
from its initial position, its velocity, and how long it hagén visible. After a certain amount of
time, an obstacle cannot be unclassified as dynamic. A raht®geometry for each obstacle is
then computed and the data is sent to the Map module.

LADAR-Based Curb Perceptor. The ladar-curb-perceptor (LCP) module is intended to detect
and track the right side of the road. The “curb” in questioachaot be an engineered street curb,
but rather denotes any sufficiently long, linear cluster ADIAR-visible obstacles that is nearly
aligned with the vehicle’s current direction of travel. $laould be a row of bushes or sandbags, a
berm, a building facade, or even a ditch. The LCP uses two senée roof-mounted Riegl laser
range finder (the beam which intersects the ground platiem in front of Alice), and the middle
front bumper SICK laser range finder (the sweep plane of whsgtarallel to the ground). The
Riegl enables the LCP to see obstacles of any height, inclugiggtive, but only out to its ground-
intersection distance. The SICK sees only obstacles €\tem high, but out to a much greater
range. Each scan of the LADARSs is laterally filtered for stegesdetection; points that pass are
considered obstacles which may be part of a curb (this proeed robust to ground strikes due
to pitching). Obstacle locations are converted to vehiderdinates for aggregation over time,
yielding a 2-D distribution as Alice moves forward. The @nt set of obstacles is clipped to a
rectangular region of interest (ROI) about 30 m long aloregdinection of travel and several lanes
wide, with its left edge aligned with Alice’s centerline.dfn the entire set of obstacles, a subset
of “nearest on the right” is extracted, one for each of thirtm-deep strips orthogonal to the long
axis of the ROI. A RANSAC line-fitting is performed on these rest obstacles and the number
of inliers is thresholded. If below threshold, the instae@us decision is that no curb is detected;
if above, the RANSAC-estimated line parameters are the itetaous measurement of the curb
location. Both the curb/no-curb decision and the curb lineupeeters are temporally filtered for
smoothness.

10
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RADAR-Based Obstacle Perceptor.The radar-obs-perceptor module is simply a wrapper around
existing software that is embedded within the TRW-AC20 Auiige RADAR. As described ear-
lier the AC20 can report up to ten “targets” and ten “trackglwiver, only the tracks are used and
sent to the Map module as the targets have been found to eergpidy. Since both RADARS are
attached to pan-tilt units, some pre-filtering of the traiskequired. This is necessary because if
the base of the RADAR is moving with respect to the vehicleyésalting tracks can be corrupted.
To mitigate this, the RADAR-based obstacle perceptor sutissrio the associated PTU Feeder
module through SensNet and marks detected tracks from theAlRA®3 void if the pan-tilt unit
was found to have a non-zero velocity at the timestamp of éteatied track. For those tracks that
are not marked as void, they get packaged and stamped withsagiated map element ID and
sent to the Map module.

Stereo-Based Obstacle Perceptor.The stereo-obs-perceptor module uses disparity infoonati
provided by the stereo-feeder modules to detect genertadbs. It uses a very simple algorithm,
but works reasonably well. The following outlines the altfon used for this perceptor:

1. Given the disparity imagé;, a buffer H is generated to accumulate votes from points with
the same disparity occurring on a given image column (smla Hough Transform).

2. The accumulator buffer/, is then searched for peaks higher than a threshigldFor each
peak, it searches for the connected region of points abogwer lthresholdl;, containing
the peak. One of the interesting features of this accumulattifer approach is that it finds
most of the vertical features since these will result in ekpednile flat features (like roads
or lane lines) won't appear as peaks.

3. The next step is to fit a convex hull on the set of points foand transform the coordinates
to local frame.

4. In this last step, each identified obstacle is trackede tand a confidence value (probabil-
ity of existence) is assigned/updated based on whetherdbk was associated with some
measure or not. Only obstacles with a high confidence aretesghe mapper. The initial
confidence is fairly low (0.4 in a scale from 0 to 1), so it takesouple of frames before a
new obstacle is sent to the map.

When implementing this algorithm, it became quite clear#atjor hindrance in performance
was due a bottleneck in the computing of the disparity of tkee® images. To account for this
bottleneck and increase overall speed of this module, messtere taken to crop certain regions
of the image that usually pertain to the sky or the hood of #ieiate. This reduced the search
space of the disparity image and increased the cycle timefbwddz. Other limitations to this
algorithm were also identified and should be noted as well:

e Tracking and data association is very basic, but works walistatic obstacles (i.e. no
Kalman filter or other Bayesian filter).

e No velocity information is provided for the tracked obstcl

e Sometimes, an obstacle is seen as two or more blobs, andis@adivo or more obstacles
are seen as one. The tracking can deal with the first sitydiidrdoesn’t deal very well with
the second, which is pretty uncommon though.

11
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Attention. The Attention module is not so much a perceptor in that it dogsperceptany
particular feature from a given data set. Instead, the ittermodule interfaces directly with the
Planning module and the PTU Feeder module to govern wherasttariated pan-tilt unit should
be facing. The Attention module performs in the followingmmar:

1. We receive a directive from the Planning module about viaiaypoint the vehicle is plan-
ning to go to next and what the current “planning” mode is. plenning mode can be
either:

e INTERSECT LEFT - the vehicle is planning a left turn at an upawgrintersection
e INTERSECT RIGHT - the vehicle is planning a right turn at an upgnmntersection

e INTERSECT STRAIGHT - the vehicle is planning to go straight a tipcoming in-
tersection

e PASS LEFT - the vehicle is planning to pass left

e PASS RIGHT - the vehicle is planning to pass right
e U-TURN - the vehicle is planning a u-turn maneuver
e NOMINAL - the vehicle is in a nominal driving mode

2. A grid-based “gist” map is next generated based on thevesteirectives from the planning
module. (The “gist” nomenclature comes from work developetthe visual attention com-
munity and is an abstract meaning of the scene referringetedimantic scene category.) The
gist map details which cells in the grid-based map actuapresent the “scene”, whether
the scene be an intersection, the adjacent lane or a stofystacte. For example, when
making a right turn at an intersection, the gist of the sceoelavbe all lanes associated with
the intersection that can potentially turn into the desles.

3. A weighted cost is then applied to the gist map grid celis ih dependent on the planning
mode. The weighting is chosen such that areas with highdridiiv and high potential of
vehicle collision are given large weighting while thosetthge not, are given lower weight-
ing. Using the above example for the right turn, the weightih the cells associated with
those lanes in the gist map would be chosen such that if ankaaealid not have a stop line,
a large weighting would be assigned; if all lanes had stagsli uniform weighting would
then be applied.

4. A cost map is then generated which is initialized to theghtsd gist map but keeps a mem-
ory of which cells have beeattended(explained in the next step). Once a cell in the cost
map has been visited, the cost of that cell is reduced butatldo grow at a rate dependent
on a specified growth constant. This allows for the revigithheavily weighted cells while
still allowing lesser weighted cells to be visited.

5. Once the cost map is generated, the peak value of the cgsistthen determined as a
coordinate point in the local frame and sent to the PTU Feeaetule. The PTU Feeder
module will then execute the necessary motionattendto the desired location. While in
motion, the Attention module is restricted from sending adgitional attention commands
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to prevent an overflow of pan-tilt commands which could caaus®rdware failure of the
unit.

6. Updating the cost map is the final step in the algorithm. Ph& pan and tilt angles are
continually read in from SensNet and the correspondingdirgite vector for the pan-tilt
unit is calculated. The grid cells in the cost map that arenéoto intersect with the line-
of-site vector are then reduced to a zero cost so that the gabh&earch will not select this
already attended cell. However, the growth of the cell (axdeed earlier) will then begin
and will grow up to the maximum cost specified by the weightistirgap.

With regard to the pan-tilt unit on the roof and in the speciase of the NOMINAL planning
mode (which is the most common mode where the vehicle is doasic lane following), a gist
map is not generated. Instead, a series of open-loop consaaedent to the PTU Feeder module
governing the roof PTU to sweep the area in front of the vehi€his behavior allows the LADAR
scans from the LADAR range finder attached to the PTU to gémarterrain map that is then used
to filter out “groundstrikes” in the LADAR-Based Obstacle Reptor (described earlier).

3.3 Fused Map

Mapper. The map is structured as a databaseap elementand implements a query based inter-
face to this database. Map elements are used to represembtizearound Alice. A fundamental
design choice was to move away from a 3-dimensional worldesgmtation to a simpler, but less
accurate 2.5-dimensional world representation. Map aetésrege defined in the MapElement class
and form the basis for this representation. The map elenmeptssent planar geometry but with
a possible uniform nonzero height, and are used to représeatin the road as well as obstacles
and vehicles.

The Mapper module maintains the representation of the @mwvient which is used by the
planning stack for sensor based navigation. It receives idahe form of map elements from the
various perceptors on a specificannelof communication and fuses that data with any prior data
of the course route in Route Network Definition File (RNDF) fatmlt then outputs a reduced set
of map elements on a different channel across the netwoekuisl ofchannelsfor map element
communication made it easy to isolate which map elementes s@&nt by which perceptors. This
often helped in identifying bugs in the software and isolgtit to either the fusion side of the
map or the perception side of the map. This design choiceadleaed for multiple modules to
maintain individual copies of the map, which proved extrgnuseful for visualization tools.

Sensor fusion between different perceptors is also peddrin the mapper module. This
allows objects reported by multiple perceptors to be regubats a single object. The sensor fusion
algorithm is based on proximity of objects of the same typeuBdstrike filtering can also be done
at this stage by “fusing” elevation data with obstacle datetfiat obstacles in the same location as
the ground plane are removed.) Additional logic is requikgth a moving vehicle object is in the
same location as a static obstacle; in this case the moviegtdigpe takes precedence since some
perceptors do not sense motion.

In the final race configuration, the Mapper module was evdigtabsorbed into the Planning
module, where it ran as a separate thread. The purpose afdiiswofold: (1) It vastly reduced
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Figure 4: Three-layered planning approach: The mission-level ptdakes the mission goal and specifies
intermediate goals. These intermediate goals are passed to the tactical,pldmalercombined with the
map information and the traffic rules, generates a trajectory. This trajestgrgissed to the low-level
planner, which converts the trajectory into actuator commands. The dgtespessing step is also shown.

network traffic that was increased by the sending and rewgiof thousands of map-elements
when Mapper existed as it's own module. (2) It kept the onlytidized copy of the map within
the Planning module, where it was needed most.

4 Navigation Subsystem

The problem of planning for the Urban Challenge was comp@itdtty three factors: first, Alice
needed to operate in a dynamic environment with other veficNot only was detection and
tracking of these mobile objects necessary, but also tleiador was unknown and needed to
be estimated and incorporated in the plan. Second, thereagent to obey traffic rules imposed
specific behavior on Alice in specific situations. This metdatt the Alice’s situation (context)
needed to be estimated and Alice had to act accordingly. Menveince there were other vehicless
on the course, Alice needed to be able to recover from stmsitwhere other vehicles did not
behave as expected and thus adjust its own behavior. LABtg needed to be capable of planning
in a very uncertain environment. Since the environment wasknown a priori, Alice had to
determine its own state, as well as the state of the worldceSihis state cannot be measured
directly, it needed to be estimated. This estimation pregesoduced uncertainty into the problem.
Furthermore, the behavior of the dynamic obstacles is notvkrin advance, thus there was some
uncertainty associated with their predicted future stafg®ther source of uncertainty is the fact
that no model of a vehicle is perfect, and thus there is someess noise (i.e., given some action
the outcome is not perfectly predictable).

The approach that Team Caltech followed in the planning waseetlayer planning process,
illustrated in Figure 4. At the highest level, the missioriads used to plan a route to the next
checkpoint, as specified in the Mission Data File (MDF). Tioiste is divided into intermediate
goals, a subset of which is passed to the tactical level plarirhe tactical planner is responsible
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for taking this intermediate goal and the map (which is Aiaepresentation of the world), and
designing a trajectory that satisfies all the constrainthéproblem. These constraints include
traffic rules, vehicle dynamics and constraints imposedhieywtorld (obstacles, road, etc.). The
trajectory is then passed to a low-level trajectory trackimis feedback controller converts the
trajectory into actuator commands that control the vehiCleere is also a data preprocessing step,
which is responsible for converting the map into a formaeasile to the planner, and a prediction
step that estimates the future states of the mobile agemisseldifferent pieces of the planning
problem are described in this section.

A note on the coordinate system used is in order. For the plgrproblem, there are two
frames of interest. The first coordinate system, called tbddiframe, is the geo-rectified frame
(i.e., the frame that GPS data is returned in). This cootdiggstem is translated to waypoint 1.1.1
to make the coordinates more manageable. This is the cabedaystem in which the tactical
planning is conducted in since it is the coordinate framealugeDARPA in the Route Network
Definition File (RNDF). The second coordinate frame of inse¢lis the local frame. This frame
is initialized to waypoint 1.1.1 as well, but is allowed tafdto account for state jumps. This
is the frame that the sensors returned values in and is usée ilow-level planning. The local
frame ensures that obstacle positions are properly mairgitive to the vehicle, even if the GPS-
reported state position jumps due to GPS-outages or chasgiellite coverage.

4.1 Mission Level Planning

The mission-level planning has a number of functions. FHirg the interface between the mission
management and health management systems. Second, iaimsiathistory of where we have
driven before, which routes are temporarily blocked, eturd; it is responsible for converting the
mission files into a set of intermediate goals and feedingealgmals to the tactical planner as the
mission progresses. The first function is discussed in @eétias part of the system-level mission
and contingency management. The latter two functions adsed here.

Route Planner. The route planner is the module that is responsible for fopdimoute given the
RNDF and MDF. The RNDF is parsed into a graph structure, calledravGraph. The planner
uses a Dijkstra algorithm to search this graph. Furtherptbeegraph is used to store information
about previous traverses of roads, including informatibauh road blockages, etc. The route-
planner is part of the mission-planner module, which encmseed these functions, as well as the
interface with the mission and health management. The omgsianner is implemented in the
Canonical Software Architecture (CSA) and described in metaiblin Section 5.1.

4.2 Trajectory Planning

The trajectory planning level is responsible for generptirtrajectory based on the intermediate
goals from the route planner, the map from the sensed datdhancffic rules. Before the planner
can be executed, a number of preprocessing steps are ngcdsisst, the map data must to be
converted into the appropriate data format used by the planBecond, the future states of the
detected mobile objects need to be determined. The plamgpgpach followed here is known
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as receding horizon control (RHC). In this approach, a plarbtained that stretches from the
current location to the goal. This plan is executed only fehart time and then revised at the next
planning cycle, using an updated planning horizon.

The first step in the trajectory planning algorithm is to settlie planning problem. Traffic
rules specify behaviors, and it is necessary to enforceethebaviors on Alice. The behavior
currently required is determined via a finite state machifnbis behavior included intersection
handling and is implemented in the logic planner module. Békavior is enforced by setting
up a specific planning problem. For example, the problem tmgh allow changing lanes in a
region of the road where there is a double yellow line lanasspr. The idea is to be able to solve
multiple planning problems in parallel and then choose #& Bolution. This would have been
useful when the estimate of the current situation cannobibeed with sufficient certainty. This
planning problem is then passed to the appropriate patmeian

Two types of path planning problems needed to be solvednpigrin structured regions (such
as roads, intersections, etc.) and unstructured regioieh @s obstacle fields and parking lots). In
our approach we used two distinct approaches for thesegmahlboth of which are based on the
receding horizon control approach.

For planning in structured regions, a graph is constructéiti®, based on the RNDF. In this
graph, the road geometry is inferred. The motivation bethigiplanning scheme is that the traffic
rules imposed a lot of structure on the planning problem.sT&ione attempt to leverage this
structure optimally. A second motivation is that, giventttiee graph defined the rail and lane
changes and turns, it is possible to verify that we could detepa large portion of the course
beforehand. The limitations of this approach are the asdugeemetry of the road and potential
state offsets. Given that we had aerial imagery of the tastsep the first limitation is not overly
constraining. Also, the planner had a mode that allowedsttitch to an “off-road” mode, where
the planner is not constrained to the precomputed graphwbuld navigated an obstacle field
and try to reach a final pose. The second limitation is moregismne, and it was decided to add
multiple rails to each lane to allow the planner to choosebi rail, based on the detected road
markings. This planner was implemented as the Rail Planreisattiscussed some more below.

For path planning in unstructured regions, three parafipf@aches were developed. The first
approach is based on a probabilistic roadmap approach vahgr&ph is constructed online. The
approach followed is described below in the clothoid-pkrsection. The second approach, called
the circle planner, constructed paths consisting of cacalcs and straight line segments. This
approach was not actually used during the race. Both of tHasegrs where spatial planners. The
third approach is an optimal receding horizon control p&niThis is a spatio-temporal planner
(i.e., plans the trajectory directly). This planner, cdltee dynamic planner, was not used during
the race, but is outlined in the sections below.

In order to plan in a dynamic environment, we separated taenphg problem into a spatial
planning problem and a spatio-temporal planning probleinis greatly simplifies the planning
problem. Also, it is important to note that planning for dygma obstacles vs. static obstacles is
fundamentally different. For example, when following a,care wants to plan where you want
to drive and then adjust your velocity to obtain a safe ttaygc Thus, the separation of planning
problems is justified. Also, in dealing with dynamic obséscbne did not necessarily want to
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adjust your spatial path. There are some cases, howeverewbdgistment of the spatial path is
required. For example, when passing an obstacle and thareeisicle approaching from the rear
in the lane we want to change into, it is not sufficient to ordnsider where that mobile object is
currently, but we have to account for the future states sfrtiobile object. Similarly, when driving
down a lane and there is a mobile object driving towards us,nbt sufficient to only adjust the
velocity profile. This is accomplished by using the predictinformation in two ways: first, to
define regions prohibited to planning, and second to do ardimeonflict analysis to determine
possible collisions and avoid these early on.
The finer details of the modules used in the planning stackiaes next.

Planner. The planner module functioned as the interface with theratfission-level planner and
the map. The planner is implemented in the Canonical Softiachitecture. It is responsible
for maintaining a queue of intermediate goals, maintaitiistpories of some pervasive properties
and sequencing the calls to the modules to solve the plamotgem. In the case where multi-
ple planning problems are set up, it would also maintaindlierent plans and select the best
one (though this was not implemented). The planner modudsis responsible for sending the
trajectory that is obtained to the low-level planner for@axeon.

Since the planner has to interface with the different lil@grit was convenient to generate a
module that maintained these interfaces. These interfa@ediscussed next, before focusing on
the functionality of the the individual library modules.

Planner Interfaces. The interfaces between the Planner module and the librageded to be
maintained in a central location. These interfaces are taiaed in a module called the temp-
planner-interfaces, with the exception of the plannersldse planning in unstructured regions.
The reason for this separation was that the unstructureoir@tpnners used some objects that are
slow to compile and this separation allowed a more efficiecbdhposition of the software.

Some of the interfaces defined in the temp-planner-intesfasodule include the status data
structure, which is used to report the status of the diffelibraries used in the planning problem.
Also, the graph structure used for planning in the structuegiion is defined here, together with
the path. Since the trajectory is an interface between ttiecgd and low-level planners, this
interface is defined elsewhere.

Logic Planner. The logic planner is responsible for high-level decisiorkimg in Alice. It has
two functions: (1) to determine the current situation antheaip with an appropriate planning
problem to solve and (2) to do internal fault handling. Thasgtions are not independent of
each other, but we focus here on the the first function andigisstault handling in more detail in
Section 5.

The logic planner is implemented as two finite state machifié® first state machine is re-
sponsible for determining the current situation, by coasity Alice’s position in the world (e.g.,
proximity to intersections) and the status of the previdtenapt at trajectory planning (i.e., if the
planner failed due to blockage by an obstacle). These elisnaga factored in when setting up
the planning problem to be solved in the current cycle. Asxample of how this might work,
consider a situation where Alice is on a two-lane, two-wagdravith a yellow divider. The initial
problem is to drive down the lane to some goal location. Thggven to the path planner to solve,
but an obstacle blocks the lane. The path planner returrst@sstaying that it cannot solve the
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problem and avoid obstacles (one of the constraints). Iméxéplanning cycle, the logic planner
can adjust the plan to now allow passing, at which point tbempér will evaluate paths that move
into the other lane.

The second state machine is used for intersection handfiage we must account for the cur-
rent map, the road geometry and Alice’s position in the wayldetermine the correct intersection
behavior. This behavior is then encoded in a planning problghich is passed to the rest of the
planning stack. A detailed desription of the intersectiandiing logic is available in [5].

A note on dealing with uncertainty is in order at this pointieTlogic planner is susceptible
to uncertainty in the current situation, as well as potdgtiancertainty in the map. To overcome
this hurdle, we had hoped to implement a probabilistic fisitge machine. However, for this case
it is conceivable that of the state transitions defined owtashe state, none of these transitions
are valid with high enough confidence. In this case, one ambrovould be to set up planning
problems for the relevant transitions, solve the problentsevaluate the solutions. Unfortunately,
this was never implemented due to lack of time.

Rail Planner. The rail planner’s main function is to search over the premat@d graph to find the
optimal path to the goal. Since this graph is defined in thddvoame, the planner has to plan in
the frame. The first step is to preprocess the map data. Ttaswast be converted to either fields
associated with the nodes of the graphs or weights assdaidtie edges. Thus, the precomputed
graph node locations are calculated and fixed offline, buigtigh is updated online to reflect
the latest sensing information. Once this step is complatedoptimal path to the goal can be
calculated. To accomplish this, the planner uses an A* d@lgarto search the graph. The cost
function used in the optimization penalizes curvature chlig useful to avoid sharp maneuvers at
high speed. Furthermore, the cost function tends to keepethiele in the center of the perceived
lane. In addition, the obstacles are included in the costigea plans that stay further away from
obstacles when possible. In this way the uncertainty agsatwith the sensed objects is accounted
for.

Figure 5 shows the different graphs created by the Rail Plaiiihe RNDF is first used to infer
the geometry of the road and a single rail is placed down tiferfied) center of the lane (a). Turns
through intersections are also defined. This is called thd graph. Since the road geometry is
only approximately known, more rails are added to each lanadke the set of solutions to be
searched less restrictive (b). Rail changes and lane changeken defined on what is now the
planning graph (c).

It was found that in some cases the precomputed graph wasmstraining. This was because
the rail change, lane changes and turns where precomputeeevdr, it was quite possible to have
to deal with an obstacle between these predefined maneukehsnction was implemented in
this case to locally generate maneuvers (paths), calleddhiele-subgraph, that generated plans
from the current location and connected to the precomputgpolhgas quickly as possible. This is
shown in Figure 5d. This normally gives the planner enougtidiity to navigate these cases. The
planning algorithm is also able to plan in reverse, whennadlh, making the planner very capable.

As mentioned before, one of the concerns with using thisr@ars the inference of the road
geometry from the RNDF. A mode of the planner was implementeere/a local graph is gener-
ated online. This graph is much more elaborate that the leebitbgraph discussed above and this
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Figure 5: Operation of the rail planner.

capability allowed the planner to handle cases where the dahnot line up with the expected
geometry, including obstacle fields. The difficult probleetéame to determine when is it appro-
priate to switch into this mode. Unfortunately, this prahleas never addressed and the segments
for using this mode was hard coded base on manual inspedtitbe &NDF.

Clothoid Planner. The clothoid planner is the main planner used for planningristructured
regions and is implemented in the s1lplanner module. Thigmsph-search based planner, where
the graph is generated online. The graph is constructed ademily of clothoid curves. Clothoid
curves are curves with constant angular velocity and arenwamty used for road layout design.
The graph is constructed by expanding a tree of these faafieurves. The tree is expanded until
a relatively uniform covering of the state space is obtai&dhis point, the graph is searched to
find the optimal solution. A cost map is queried at each nodedpto guide the search. At each
pose considered, an obstacle overlap check is performetstoethat the obstacles are avoided.
Thus, obstacles are handled both as soft constraints, togmlistions away from obstacles, and as
hard constraints. The output of this planner is a path in #meesformat as the rail planner.
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Velocity Planner. The velocity planner accepts a spatial path and time pagines this path to
obtain a trajectory. The velocity planner takes into actqarth features such as stop lines, obsta-
cles on the path and obstacles close to the path. The plaonsiders the path, which has all the
information necessary for velocity planning encoded iaitgl specifies a desired velocity profile.
For example, it will bring Alice to a stop at a desired decati®n and at a desired distance away
from an obstacle. For obstacles on the side of the path,listeilv Alice down when passing close
to these obstacles. Lastly, the velocity planner consittergurvature of the path and adjusts the
velocities along the path accordingly. The velocity planseompatible with the rail-, clothoid-
and circle-planners. The output of the planner is a trajgcto

Prediction. Planning in an environment where the agents move at highdseegires some form
of prediction of the future states of the mobile objects.diitgon of cars driving in urban environ-
ments is eased by the structure imposed on the environmgrg bomplicated by noisy sensory
data and partial knowledge of the world state. The worldestatap) and the mobile object’s po-
sition in this world are necessary to determine behavioro &pproaches for prediction where
investigated: (1) prediction based on particle filters @)dgoediction utilizing the structure in the
environment and simple assumptions on the velocities ofrtbieile agents. The former approach
was dropped since the data representation was not easdypm@ted into the current planning
approach. The latter approach has the disadvantage of mgy bé much use in unstructured
regions.

The prediction information is used in two ways: first, theedatused to define restricted regions
around mobile agents. This is especially useful when planim intersections (such as merging)
or planning lane changes. The second use is for dynamic coafialysis. Here, the predicted
future states of the mobile objects are compared to the pthtmajectory of Alice. If a collision
is predicted, an obstacle is placed in the map that altexeAliplan and thus avoids a potential
collision. Noisy measurements of the mobile object’s statie cause prediction to sometimes be
very conservative (when the velocity is off) or simply wrofwghen the obstacle position in the
partially known road network is estimated wrong).

4.3 Low-level Control and Vehicle Interface

The lower-level functions of the navigation system wereoagglished by a set of tightly linked
modules that controlled the motion of the vehicle along tesirdd path and broadcast the current
state of the vehicle to other modules.

Follower. The follower module receives a trajectory data structusenfplanner and state infor-
mation from astate. It sends actuation commands to gcdfoower uses decoupled longitudinal
and lateral PID controllers, to keep Alice on the trajectdriye lateral controller uses a nonlinear
controller that accounts for limits on the steering rate angle, and modifies its gains based on
the speed of the vehicle [4].

Gcedrive. Gecdrive is the overall driving software for Alice. It worky Ibeceiving directives from
follower over the network, checking the directives to detiee if they can be executed and, if
so, sending the appropriate commands to the actuators.iv&a@also performs checking on the
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state of the actuators, resets the actuators that fail eimgnhts the estop functionality for Alice
and broadcasts the actuator state. Also included in theofodedrive was the implemention of
physical protections for the hardware to prevent the vehidm hurting itself. This includes
three functions: limiting the steering rate at low speedsy@nting shifting from occurring while
the vehicle is moving, transitioning to the paused state Imclv the brakes are depressed and
commands to any actuator except steering are rejectecerii@eommands are still accepted so
that obstacle avoidance is still possible while being pdugden any of the critical actuators such
as steering and brake fail.

Astate. The astate module was responsible for broadcasting thelegiosition (position, orien-
tation, rates) data. This module read data from the Applaandware and processed the data to
account for state jumps. It then broadcast the world and foaiae coordinate for the vehicle.

Reactive Obstacle Avoidance.To ensure safe operation, it was decided to implement adoet|
reactive obstacle avoidance (ROA) mechanism. This meshais the reason why the low-level
planner needed to plan in the local frame. The ROA would exalllADAR data directly and
when an object is detected within some box around Alice (tvisoselocity dependent), it would
adjust the reference velocity of the trajectory to bringcAlio a stop in front of this object. One
of the key issues that needed to be faced was making this meamaensitive enough to prevent
collisions, but not so sensitive that it reacts to everyeggissitive detection. Furthermore, the rest
of the planner stack needed to be told that ROA is active (niilse Alice stops for no apparent
reason). Lastly, their needed to be a mechanism to ovelr&lROA, otherwise there are situations
where Alice would just be stuck indefinitely.

5 Mission and Contingency Management

Due to the complexity of the system and a wide range of enets in which the system must be
able to operate, an unpredictable performance degradaitibe system can quickly cause critical
system failure. In a distributed system such as Alice, perémce degradation of the system may
result from changes in the environment, hardware and scétf@dlures, inconsistency in the states
of different software modules, and faulty behaviors of @asafe module. To ensure vehicle safety
and mission success, there is a need for the system to beoahtederly detect and respond to
unexpected events related to vehicle’s operational chfedi

Mission and contingency management is often achieved @soentralized approach where a
central module communicates with nearly every software uteoth the system and directs each
module sequentially through its various modes in order ¢over from failures. As a result, this
central module has so much functionality and respongjlalitd easily becomes unmanageable and
error prone as the system gets more complicated. In factadure in the 2005 Grand Challenge
was mainly due to an inability of this central module to reasand respond properly to certain
combination of faults in the system. This results from tHéalilty in verifying this module due to
its complexity.

The contingency management subsystem comprises the migisioner, the health monitor
and the process control modules. The Canonical Softwareitaoture (CSA) was developed to
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allow mission and contingency management to be achievediist@buted manner. This function
works in conjunction with the planning subsystem to dynaitycreplan in reaction to contin-
gencies. The health monitor module actively monitors thetheof the hardware and software to
dynamically assess the vehicle’s operational capalsiliteoughout the course of mission. It com-
municates directly with the mission planner module whighlaas the mission goals based on the
current vehicle’s capabilities. The process control medrisures that all the software modules
run properly by listening to the heartbeat messages frorthalinodules. A heartbeat message
includes the health status of the software. The processataestarts a software module that
quits unexpectedly and a software module that identifie#f its unhealthy. The CSA ensures the
consistency of the states of all the software modules in lxening subsystem. System faults are
identified and replanning strategies are performed diggitly in the planning subsystem through
the CSA. Together these mechanisms make the system capadtbibiting a fail-ops/fail-safe
and intelligent responses to a number different types afries in the system.

5.1 Canonical Software Architecture

The modules that make up the planning system are respofaibieasoning at different levels of
abstraction. Hence the planning system is decomposed imtrarchical framework. To support
this decomposition and separation of functionality whilaintaining communication and contin-
gency management, we implemented the planning subsystaroanonical software architecture
(CSA) as shown in Figure 6. This architecture builds on thee staalysis framework developed at
JPL [2] and takes the approach of clearly delineating ststienation and control determination.
To prevent the modules from getting out of sync because ahttensistency in state knowledge,
we require that there is only one source of state knowledpewadh it may be captured in different
abstractions for different modules.

A control module receives inputs and delivers outputs. Tpeitis consist of sensory reports
(about the system state), status reports (about the sthtilsey modules), directives/instructions
(from other modules wishing to control this module), segpsequests (from other modules wish-
ing to know about this modules estimate of the system statéltatus requests (from other mod-
ules wishing to know about this module status). The outpigishee same type as the inputs, but in
the reverse direction (reports of the system state frormtioidule, status reports from this module,
directives/instructions to other modules, etc).

For modularity, each module in the planning subsystem malgrbken down into multiple
CSA modules. A CSA module consists of three componertdsitration, Control andTactics—
and communicates with its neighbors through directive asgonse messages, as shown in Figure
7. Arbitration is responsible for (1) managing the overall behavior of thedute by issuing a
merged directive, computed from all the received direstii® theControl, and (2) reporting
failure, rejection, acceptance and completeness of avegtdirective to th&€ontrol of the issuing
module.Controlis responsible for (1) computing the output directives ®dbntrolled module(s)
based on the merged directive, received response and rstatamation; and (2) reporting failure
and completeness of a merged directive toAhgitration. Tacticsprovides the core functionality
of the module and is responsible for generating a contraictac a contiguous series of control
tactics, as requested by t@entrol.
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Figure 6: The planning subsystem in the Canonical Software Archited@arees with double lined borders
are subsystems that will be broken up into multiple CSA modules.

5.2 Health Monitor and Vehicle Capabilities

The health monitor module is an estimation module that cootiisly gathers the health of the
software and the hardware of the vehicle (GPS, sensors amatais) and abstracts the multitudes
of information about these devices into a form usable forrthgesion planner. This form can
most easily be thought of as vehicle capability. For exampke may start the race with perfect
functionality, but somewhere along the line lose a righthfrbADAR. The intelligent choice in
this situation would be to try to limit the number of left andasght turns we do at intersections
and slow down the vehicle. Another example arises if theclelbecomes unable to shift into
reverse. In this case we would not like to purposely plang#tat require a U-turn.

From the health of the sensors and sensing modules, thé meattitor estimates the sensing
coverage. The information about sensing coverage and téhiedf the GPS unit and actuators
allow the health monitor to determine the following vehickgpabilities: (1) turning right at in-
tersection; (2) turning left at intersection; (3) goingagght at intersection; (4) nominal driving
forward; (5) stopping the vehicle; (6) making a U-turn thatdlves reverse; (7) zone region oper-
ation; and (8) navigation in new areas.
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Figure 7: A generic control module in the Canonical Software Architecture

5.3 Mission Planner

The mission planner module receives the vehicle capaslftom the health monitor module, the
position of obstacles with respect to the RNDF from the mappadule and the MDF and sends
the segment-level goals to the planner module. It has these rasponsibilities and is broken up
into one estimation and two CSA control modules.

Traversibility Graph Estimator. The traversibility graph estimator module estimates tiedrsibil-
ity graph which represents the connectivity of the routevoekt. The traversibility graph is deter-
mined based on the vehicle capabilities and the positiohebbstacles with respect to the RNDF.
For example, if the capability for making a left or straightrt decreases due to the failure of the
right front LADAR, the cost of the edges in the graph corresfiog to making a left or straight
turn will increase, and the route involving the less numidghese maneuvers will be preferred.
If the vehicle is not able to shift into reverse, the cost @& #uges in the graph corresponding to
making a U-turn will be removed.

Mission Control. The mission control module computes the mission goals peatifyy how Alice

will satisfy the mission specified in the MDF and conditiomslar which we can safely continue
the race. It also detects the lack of forward progress anldmeghe mission goals accordingly.
The mission goals are computed based on the vehicle camilihe MDF, and the response
from the route planner module. For example, if the nomingdinly forward capability decreases,
the mission control will decrease the allowable maximurnespghich is specified in the mission
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goals, and if this capability falls below certain value dadhe failure in any critical component
such as the GPS unit, the brake actuator or the steeringtaGttiee mission control will send a
pause directive down the planning stack, causing the \etocstop.

Route Planner. The route planner module receives the mission goals fronmilssion control
module and the traversibility graph from the traversipifiraph estimator module. It determines
the segment-level goals which include the initial and firahditions which specify the RNDF
segment/zone Alice has to navigate and the constraintggepted by the type of segment (road,
zone, off-road, intersection, U-turn, pause, backup, endhission) which basically defines a
set of traffic rules to be imposed during the execution of #g#gment-level goals, in order to
satisfy the mission goals. The segment-level goals arerindted to the planner module using the
common CSA interface protocols. Thus, the route plannerbeilhotified by the planner when a
segment-level goal directive is rejected, accepted, cetag@lor failed. For example, since one of
the rules specified in a segment-level goal directive is tachwbstacles, when a road is blocked,
the directive will fail. Since the default behavior of thepher is to keep the vehicle in pause, the
vehicle will stay in pause while the route planner replamsrtute. When the failure of a segment-
level goal directive is received, the route planner willuest an updated traversibility graph from
the traversibility graph estimator module. Since this gregbuilt from the same map used by the
planner, the obstacle that blocks the road will also shownttpe traversibility graph, resulting in
the removal of all the edges corresponding to going forwialing only the U-turn edges from
the current position node. Thus, the new segment-leveldjcadtive computed by th€ontrol of
the route planner will be making a U-turn and following aketbl-turn rules. This directive will
go down the planning hierarchy and get refined to the pointreitiee corresponding actuators are
commanded to make a legal U-turn.

5.4 Fault Handling in the Planning Subsystem

In our distributed mission and contingency management dvaonk, fault handling is embed-
ded into all the modules and their communication interfandle planning subsystem hierarchy
through the CSA. Each module has a set of different contratesjies which allow it to identify
and resolve faults in its domain and certain types of fagdyseopagated from below. If all the
possible strategies fail, the failure will be propagatedhg hierarchy along with the associated
reason. The next module in the hierarchy will then attempeswlve the failure. This approach
allows each module to be isolated so it can be tested andegenfuch more fully for robustness.

Planner. The logic planner is the component that is responsible folt taandling inside the

planner. Based on the error from the path planner, the vglptanner and the follower, the logic

planner either tells the path planner to replan or resetpecifes a different planning problem
(or strategy) such as allowing passing or reversing, usiegoff-road path planner, or reducing
the allowable minimum distance from obstacles. The logiadaling with these failures can be
described by a two-level finite state machine. First, thé&yel state (road region, zone region,
off-road, intersection, U-turn, failed and paused) is dateed based on the directive from the
mission planner and the current position with respect taRN®F. The high-level state indicates
the path planner (rail planner, clothoid planner, or ofigaail planner) to be used. Each of the
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Figure 8: The logic planner finite state machine for the road region. Eaehdetines the drive state (DR
drive, BACKUP, and STCG= stop when Alice is at the right distance from the closest obstacle as sgecifie
by the associated minimum allowable distance from obstacles), the allowableveen@IP= no passing

or reversing allowed, P= passing allowed but reversing not allowed, BRboth passing and reversing
allowed), and the minimum allowable distance from obstacles §afety, A= aggressive, and B bare).

FAILED

collision-free path with DR,P,R is found

high-level states can be further extended to the secorad$tate which completely specifies the
planning problem described by the drive state, the alloevatdneuvers, and the allowable distance
from obstacles.

e Road regionThe logic planner transitions to the road region state whenytpe of segment
specified by the mission planner is road. In this state, thelanner is is the default path
planner although the clothoid planner may be used if all theteggies involving using the
rail planner fail. There are thirteen states and twentysénansitions within the road region
state as shown in Figure 8. The DR,NP state is considered tebetninal state. The logic
planner only transitions to other states due to obstacteskirlg the desired lane or errors
from the other planners.
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Figure 9: The logic planner finite state machine for the zone region (a)f&noaal (b). Each state defines
the drive state (DR= drive, and STQO= stop when Alice is at the right distance from the closest obstacle
as specified by the associated minimum allowable distance from obstaclef)eandnimum allowable
distance from obstacles €S safety, A= aggressive, and B bare).

e Zone regionThe logic planner transitions to the zone region state whenytpe of segment

specified by the mission planner is zone. Reversing is allamedsince the clothoid planner
is the default path planner for this state, the trajectoplasined such that Alice will stop at

the right distance from the obstacle by default, so onlydstates and four transitions are
necessary within the zone region state as shown in Figuje 9(a

Off-road The logic planner transitions to the off-road state whentype of segment speci-
fied by the mission planner is off-road. Since passing andrsavg are allowed by default,
six states and ten transitions are necessary within theoaff-state as shown in Figure 9(b).

IntersectionThe logic planner transitions to the intersection staterwhiece approaches an

intersection. In this state, passing and reversing mamsiave not allowed and the trajectory
is planned such that Alice stops at the stop line. The raiiipda is the default path planner.
Once Alice is within a certain distance from the stop line andtopped, the intersection
handler, a finite state machine comprising five states (reseting for precedence, waiting

for merging, waiting for the intersection to clear, jammetérsection, and go), will be reset
and start checking for precedence. The logic planner vahgition out of the intersection

state if Alice is too far from the stop line, when Alice has bestopped in this state for

too long, or when the intersection handler transitions éogb or jammed intersection state.
If the intersection is jammed, the logic planner will trai to the state where passing is
allowed.

U-turn The logic planner transitions to the U-turn state when tipe tgf segment specified
by the mission planner is U-turn. In this state, the defaatlhplanner is the clothoid planner.
Once the U-turn is completed, the logic planner will traiositto the paused state and wait

27



Team Caltech

for the next command from the mission planner. If Alice fadsexecute the U-turn due to
an obstacle or a hardware failure, the logic planner witgraon to the failed state and wait
for the mission planner to replan.

e Failed The logic planner transitions to the failed state when algtrategies in the current
high-level state have been tried. In this state, failureorted to the mission planner along
with the associated reason. The logic planner then resel$ a@nd transitions to the paused
state. The mission planner will then replan and send a nesctilie such as making a U-
turn, switching to the off-road mode, or backing up in ordeatiow the route planner to
change the route. As a result, the logic planner will tramisito a different high-level state.
These mechanisms ensure that Alice will keep moving as Isngisisafe to do so.

e PausedTlhe logic planner transitions to the paused state when & doehave any segment-
level goals from the mission planner or when the type of segrseecified by the mission
planner is pause or end of mission. In this state, the loginmzr is reset and the trajectory
is planned such that Alice comes to a complete stop as soorsafe.

Follower. Although a reference trajectory computed by the planneu#&anteed to be collision-
free, since Alice cannot track the trajectory perfectlyndy get too close or even collide with an
obstacle if the tracking error is too large. To address #sse, we allow follower to request a replan
from the planner through the CSA directive/response meshanvhen the deviation from the
reference trajectory is too large. In addition, we have enmnted the reactive obstacle avoidance
(ROA) component to deal with unexpected or pop-up obstaclée ROA component takes the
information directly from the perceptors (which can be gdiit faster) and can override the
acceleration command if the projected position of Alicdidek with an obstacle. The projection
distance depends on the velocity of Alice. The follower waport failure to the planner if the
ROA is triggered, in which case the logic planner can reptenttajectory or temporarily disable
the ROA. We have also formally verified that through the usthefCSA, follower either has the
right knowledge about the gear Alice is currently in evenutio it does not talk to the actuator
directly and the sensor may fail; otherwise, it will send tlisake command to the gcdrive.

6 Results

Extensive testing on Alice was used to validate its cap#sliand tune its performance. This
section summarizes the major results of this testing.

6.1 Site Visit

The site visit consisted of four separate runs around a siroplirse consisting of a single inter-
section and a circular loop, as shown in Figure 10. Afteiahgafety inspection and e-stop test,
the first run consisted of driving around the loop once andpearmed successfully.

The second run was a path planning run, in which a set of speagpoints were given and
a route had to be planned that included performing U-turmratjmans in the stubs. On our first
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Figure 10: Site visit course.

attempt at this run, the vehicle failed to perform the U-tsmecessfully, with an apparent loss of
steering. A combination of high temperatures and a roa@seeithat created large frictional forces
with the tires caused a torque limit to be reached in the mooatroller, resulting in a reset in

the steering controller. This problem was remedied in asg¢@itempt (after the fourth run) by

reseting an internal parameters that lowered the commasteedng at slow speeds. After this
change the test was performed successfully.

The third run involved driving multiple times around the jowith obstacles (stationary cars)
placed at various points on the route. Alice detected andladall obstacles, and completed the
run. For tests in which a vehicle was in the lane of travelc@lsignaled properly to move out of
the lane and transitioned out of the lane at the requiredmnlists. Alice did not transition back
into the lanes within the required distances, an artifathefway in which the planning algorithm
was implemented (there was an insufficiently high cost astext with gradually returning to the
proper lane).

The fourth run focused on intersection operations. The amsisted of driving multiple times
around the loop, with cars positioned at the intersectiaiffierent situations for each loop. Alice
properly detected vehicles and respected the precedetieeaxcept for two occasion.

e In one instance, there were two cars queued up at the intensexpposite Alice. When
Alice approached the intersection, it stopped, waitingva $econds, and then continued
through the intersection. According to the safety drivehdwvas in Alice), we had a small
return coming up to the intersection and then the LADARsdild®wn when we stopped.
This caused the obstacles to disappear completely (the ubsystem had no memory at this
point) and then reappear, so Alice decided that we were tstesBhicle at the intersection.

¢ In the second instance, two vehicles were queued to the fidftice. We stopped at the
intersection and waited for the first vehicle. After that it passed, we continued to wait
at the intersection. After waiting for a while, DARPA motiahée second vehicle to go
through and at that point Alice properly continued througghintersection. According to the
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Figure 11: St. Luke Medical Center (Pasadena, CA)

internal logs, the second vehicle was patrtially in the opgpkne and that Alice interpreted
this as a vehicle in the intersection, so it remained stopped

While the site visit was executed more or less successfuélyidentified several of limitations
in the design. A major difficulty in preparing for the siteiviwas the brittleness of the finite state
machine logic that accounted for traffic rules. Even with liheted complexity of the site visit
tasks, the planner had dozens of states to account foretiffenvironmental conditions and driving
modes. This made the planner very hard to debug. Some of Wer level control functions
(including path following) were also found to be lower perfance that we desired for the race.
And finally, the accuracy and persistence of the sensed @athto be improvied.

The primary changes that were made after the site visit wBréo(simplify the traffic logic
to use a very small number of modes; (2) to redesign the pignsiibsystem so that it made
use of a graph-based planner instead of the originally megdNURBS-based planner and (3)
to streamline the planner software structure so that itdaatea single CSA module rather than
separate modules for each internal function. These chamgesided with a decision to separate
the path planning problem into a spatial planner (rail-pkam and a temporal planner (velocity-
planner), rather than the originally planned spatio-terapplanner (dplanner). In addition, we
rewrote the low-level control algorithms (follower) andptemented more robust functionality for
detecting and tracking objects.

6.2 Summer Testing

During the summer of 2007, extensive testing and developmas performed at two primary test
sites: the former St. Luke Medical Center in Pasadena, CA aiddiel Marine Corps Air Station
in Irvine, CA. Over the course of three months, approxima899 miles of fully autonomous
driving was performed in these locations.

Testing at the St. Luke Medical Center was performed in the@{gnparking lot of the facility,
shown in Figure 11. While this area was quite small for testitsgproximity to Caltech allowed
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Figure 12: El Toro Marine Core Air Station test area (Irvine, CA).

us to use the facility frequently and easily. A standard sewas set up which could be used to
verify the basic driving functionality and track perforntan Some of the features of this course
included tight turns, sparse waypoint areas, parking zame=rhanging buildings and trees, and
tight maneuvering between structures.

El Toro Marine Corps Air Station was used for more extensigéing. This base is no longer
in active use and was available for lease through a propeathagement corporation. The primary
RNDF used for testing is shown in Figure 12 This facility haldo&lthe features specified in the
DARPA Technical Criteria, including multiple types of intecsions, multi-lane roads, parking
zones, off-road sections, sparse waypoints, overhangeeg tind tightly spaced buildings.

A total of 15 days of testing at El Toro were used to help turgepbrformance of the vehicle.
The first long run with no manual interventions was a run of lilesnon 19 September 2007,
approximately 6 weeks before the race. The most number @sndftiven in a single day was
40.5 miles on 16 October 2007. The highest average speed on af over 5 miles was 9.7
miles/hour on 16 October 2007. Additional testing includiegrsection testing with up to five
vehicles, merging across traffic with cars coming from batbaions, and defensive driving with
traffic coming into the lane from a driveway and oncomingficadriving in the incorrect lane.

6.3 National Qualifying Event

In this section we describe Team Caltech’s performance ih eathe three NQE test areas. We
present each run in chronological order.

Run 1. Area B, Attempt 1. Area B consisted of tasks in basic navigation, includingteou
planning, staying in lanes, parking and obstacle avoidaAceoverview of Area B is shown in
Figure 13. Basic navigation, stay in lane, parking. The ME#ted in the starting chute area, then
directed Alice to proceed down a road onto the main coursanfnere, the MDF direted Alice to
drive down several different roads on the interiod of thersewand eventually return to the starting
area.
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Figure 13: Test Area B

Alice encountered several difficulties on this run. Firee K-rails (concrete traffic barriers)
in the startup chute were less than 1m away from Alice and #iecile did not want to leave
the chutes immediately. The same problem occurred at thekthe startup area where K-rails
formed a narrow gate. In order to proceed through the areeg Ald to progress through a series
of internal planning failures before finally driving withdeced buffers on each side of the vehicle.
After successfully leaving the area after about 5 minutéigeAvas performing well on the roads
and entered the parking zone in the south part of the course.sfpacing of the vehicles to each
side of Alice was less than the required 1 meter buffer andefdpent substantial time attempting
to reorient itself to park in the spot. Once in the spot, Aweas unable to pull fully into the
parking spot because the car in front of it was closer thamdbhaired 2 meter buffer. Alice was
then manually repositioned and continued its run for a ghenibd before the 30 minute time limit
was reached.

As a result of this run, the code was changed to allow pasdistpoles that are closer than
1m away from the vehicle. In addition, the tolerance of réaghvaypoints in parking zones was
relaxed.

Run 2: Area A: Attempt 1. This test consisted of merging into traffic with 10-12 manned
vehicles circling around a “block”, as shown in Figure 14 hMes are started in the center lane
of the course and are supposed to make constant left turoseguting around the left loop of
the course in the counterclockwise direction. Four vekigléh approximately equal spacing are
circling around the larger loop in the counterclockwiseediron. Six or more vehicles clustered
together in groups of 1, 2 or 3 vehicles are circling the ofipabrection. At the south intersection,
Alice needs to merge into traffic after crossing one lanehAttorth intersection Alice is supposed
to make a left turn into oncoming traffic. The manned vehibled a separation distance of 2 to 20
seconds. Therefore Alice had to sense a 10 second or longemnglamerge quickly into the gap.
In the first attempt of NQE run A, several bugs were uncoverde first occured when Alice
entered the intersection after determining that the patholear. The proximity of a set of concrete
barriers to the road meant that Alice could not complete tine tvithout coming close the the
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Figure 14: Test Area A

barriers. The low-level reactive obstacle avoidance legas using a different threshold for safe
operation on the side of the vehicle (2 meters instead of &maihd hence it would stop the vehicle
partway through the intersection. This caused the intesetd become jammed (and generated
lots of honks).

A second, related bug occurred in the logic planner thattdteour wait at the intersection
properly. While the intersection handler was active, anopiaet of the higher-level logic planner
could switch into the STOPOBS state if it detected a nearbiciefe.g, one of the human-driven
cars was predicted to collide with Alice or its buffer regioithis change in state de-activated the
intersection handler and could cause the vehicle to enéeimtiersection when the path became
clear (without invoking the proper merge logic). Table leg\a detailed analysis of the operation
at each intersection. While in some cases the intersectindlérawas just interrupted but called
again, it was canceled completely in other cases. If it waselad, prediction was also not active.
In these cases it almost caused two accidents with mannéde&hAt the north intersection, the
software bug did not occur as logic planner did not switcb ®TOPOBS. This can be explained
by the fact that by the nature of this intersection, no vehwas crossing in front of Alice. As a
result, merging was clean in all 7 scenarios at the nortlmsetion.

Fixing the issues that were uncovered during this test reduextensive changes at the NQE.
First, the logic for reactive obstacle avoidance had to @nghd to use a different safety buffer
length in the front of the vehicle versus the sides (consistath the logic used by the planner).
Secondly, a rather major restructuring of the logic planmas required to insure that it did not
skip the intersection handling logic until it had actuallgared an intersection. The changes were
difficult to test at the NQE, even with extensive use of théingsareas (where no live traffic was
allowed) and simulation.

Run 3: Area C, Attempt 1. Area C was designed to test intersection precedence, rtargeipg
and U-turn capabilities. The RNDF consisted of two intefisastconnected by a set of three roads,
as shown in Figure 15. The major task in NQE run C was the conagalling of intersections with
vehicles having precedence and to perform a U-turn at a rtwad b At the start of the run, the
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Table 1: Analysis of performance in Area A, Attempt 1.

Location | Vehicles| Missed| Time | Comments
passed| gaps | passed

#1 S 8 N/A 32.0s| Interrupted by STOPOBS; prediction active

#2 N 1 0 7.7s| Clean merge

#3 S 6 N/A 17.0s| Interrupted by STOPOBS; prediction active

#4 N 2 0 14.6s| Clean merge

45 S 11 1 ~60.0s Cancelec_j by STOPOBS; prediction not actiye.
Almost hit vehicle

#6 N 0 21.0s| Stopped too far left; other vehicles stopped

#7 S 3 N/A 23.0s| Canceled by STOPOBS; prediction not active

#8 N 3 0 16.3s| Clean merge

#9 S 6 0 38.2s| Clean merge

#10 N 1 0 7.9s | Clean merge

411 s 4 N/A 12.0s Canceled by S_TOP(_)BS; prediction not agti-
vated. Almost hit vehicle

#12 N 0 0 9.4s| Stopped too far left; other vehicles stopped

#13 S 6 N/A 34.0s| Interrupted by STOPOBS; clean merge

#14 N 0 0 4.2s| Clean merge

Figure 15: Test Area C

inner road between the intersection is blocked and the otheds are opened. The vehicle is
commanded to go in a loop between the two intersections. ét saccessive intersection, a more
complicated scenario is established. On the final run, orbeodbuter paths is blocked, requiring
the vehicle to replan and choose a different route.

Table 2 gives an analysis of Alice’s performance. The colsioiithe table indicate the inter-
section that was encountered, the number of vehicles ahtbesection that had precedence at the
time Alice arrived, the number of vehicles detected by Aliaad the number of times visibility
was occluded by another vehicle.

Alice gave precedence correctly at all 7 intersectionsnédrisection #2 it was by accident that
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Table 2: Analysis of performance in Area C, Attempt 1.

Loc | #Veh | #Veh Lost Dur. | Comments
w/ prec| seen | visibility

#1| N 0 0 0 2.4s| Empty intersection. Correct execution

#2| S 1 1 N/A N/A | Interrupted by steering fault. Correct execution

#3| N 2 2 0 25.8s| Correct execution

aa| s 5 5 1 25 8 Qorregt exeCl_Jtlon. Qne vehicle vyas bloclgng I-
ice’s view while passing through intersection

45| N 3 3 1 34.8s _Co’rrec_t exeCl_Jtlon. Qne vehicle was blocl_<|ng I-
ice’s view while passing through intersection

46| s 1 1 2 25 8s Following at mt_ersectlon, then giving precedence.
88”28% 8?&883%{82 One vehicle was blocking Al-

47| N 3 3 2 | 37.8s . ang
ice’s view while passing through intersection

the power steering problems occurred when the other vehadealready passed the intersection.
While Alice was stationary, a troque fault in the steeringsesia lower-level module to pause
Alice for safety reasons. This event also triggers planaewitch into the state PAUSE which
stops the intersection handling algorithm. After the sysstarted up again and the intersection
handler was called, the intersection was clear and Aliceqzhthe intersection. Otherwise Alice
might have made wrong assumptions about the time of arrivaiihe@r vehicles. The results from
this run also demonstrate that ID tracking, checking fot 188 and checking for visibility are
crucial to the correct execution of the precedence. Witttoage backup algorithms, Alice would
have misinterpreted the precedence order at interseaiomsuld have lost vehicles in its internal
precedence list.

After the intersection tests, Alice had to demonstrate emirexecution of U-turns in front
of road blocks. A bug was introduced in implementing the ¢gesnfrom Area A that caused the
mission planner to crash during certain U-turn operatidim& process controller properly restarted
the mission planner after the crash, but Alice lost infoiorategarding which part of the road was
blocked. It thus alternated between the two road blocks hadun could not be finished within
the time out limit but was considered a successful clean run.

The bug that caused the mission planner to crash was fixegpomnse to the results from this
run.

Run 4. Area B, Attempt 2. Despite fixing the problems near the starting chute basedhen t
previous attempt in Area B, Alice still had difficulty initiaing to the properly state when it was
placed in the startup chute. Due to delays in the launch ofehécle by DARPA, we were able to
correct the logic in the chute and launch the vehicle cagect

With the changes in the buffer region, Alice was able to tre@dhrough the start area and
onto the course with little difficulty. At one point towardehbeginning of the run, the control
vehicle paused Alice because it appeared to be headed tevimndier. This appears to be due to
a checkpoint that was close to a barrier and hence Alice wasnhgpclose to the barrier in order to
cross over the checkpoint. Alice was put back into run modkcamtinued properly.

The remainder of the run was completed with only minor errokice properly parked in
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Table 3: Analysis of performance in Area A, Attempt 2.
Time | Action Failure Comments
#1 | 14:14:42| Merging, S inters’'n Clean merging after 14.9 s
#2 | 14:15:05| Exit of inters’n Alice stopped Stopped because of close obsfa-

cles and prediction
Problems following tight
left turn, hit curb Path/follower problems

#3 | 14:15:56| Left turn

#4 | 14:16:21| Merging, N inters’n Clean merging after 38.6s
Didn’t stop at stop line and drove
#5 | 14:17:21| Stopping, S inters’n Stop line problems into intersection.  Paused hy
DARPA
#6 | 14:19:21| Merging, N inters’n Clean merging after 20.1s
Didnt stop at stop line and drove
#7 | 14:20:01| Stopping, S inters’n Stop line problems into intersection.  Paused hy
DARPA

Prediction stopped Alice, but
manned car performed evasive
maneuver. Paused by DARPA

Pulling into on coming

#8 | 14:21:04| Exit out of inters’'n
lane

#9 | 14:22:28| End of run

the parking lot (the cars on the sides had been removed) acégued through the “gaunltet”, a
stretch of road in which a variety of obstacles had been glattethen continued driving down

several streets and through the northern zone, which hageamrg in the fence. At several points
in the run Alice ran over the curb after turning at intersaasi. Alice completed the mission in
about 23 minutes.

Run 5: Area A, Attempt 2. In the second attempt at Area A, Alice’s logic had been upmtiate
to ensure that intersection handler would not be overwritte changing into another state within
the logic planner’s state machine. Unfortunately, an wateel set of bugs caused problems on
the second attempt. Table 3 summarizes the major eventssoruth The primary errors in this
run consisted of properly detecting the stop lines, whigheaped in the logs to jump around in a
manner that had not been previously seen (either in testiother NQE runs).

To understand what happened at the stop lines, a bit moréd detaquired. The following
steps and conditions that are necessary to stop at stop lines

e Path planner - Creates path to stay in lane and to follow turns

e Planner - Search for stop lines close to path and store stepriformation within the path
structure

e Logic planner - Computes distance between Alice and nextlistefpound within path struc-
ture

e Logic planner - Depending on distance to stop line, switcstate STOP INTERSECTION
e \elocity planner - Detects state STOP INTERSECTION and modttgpcity plan

These steps are necessary as the (spatial) path plannenata@&e into account stop lines, but
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instead relies on the velocity planner to bring the vehicla stop. Therefore the function to find
the closest stop line is the critical part of the algorithm.

All modules communicate with the skynet framework. Durihg tace all skynet messages
were written into a log file. Therefore the complete run candg@dayed. Watching this replay
and checking the log files, it became obvious that the maiblpno happened in computing the
distance between Alice and the next stop line. To find theeslbstop line, Alice performs the
following actions:

Search for all RNDF stop lines within this rectangle

Project found RNDF stop lines onto path and choose closest

Query map to obtain sensed stop line position for this stop li

e Choose closest node within path, required for velocity pdann

In previous runs, sensed stop lines were only stored for fesyafter they were not picked up
anymore by the sensors. This threshold was increased dineniyQE as stop lines could not be
seen by sensors when Alice’s body was hiding the stop linesing a longer time-to-live value,
false-positives were stored longer in the map. At this timng data association in the map lead
to jumping stop lines. When the vehicle approached the stapifi lap #2 and lap #3 the data
association was right while approaching the intersectis it came closer to the real stop line,
the mapper bug assigned a false-positive stop line that v2as8ters behind Alice. In this case,
Alice is assumed to have passed the stop line and did not sttpeahreshold for passing a stop
line was set to 3.0 meters. In lap #3 the stop line was moveddbe that Alice was aiming for
a stop line that was in the middle of the intersection. Theas nwo algorithm in place detecting
sudden changes in stop line positions.

7 Accomplishments and Lessons

Although Alice di not qualify for the race in 2007, the devathoent of an autonomous vehicle
capable of driving in urban traffic was very educational aawilarding. In this section we document
some of the lessons learned and contributions of the project

7.1 Lessons Learned

Team Caltech’s approach to the Urban Challenge built on ouerexqce from 2005, in which a
combination of low-level failures were not properly hartiey the software and Alice drove over
a concrete barrier. To help mitigate the chances of a sitfiailure in 2007, a substantial effort was
placed on systems engineering and systems architectufertimately, bugs that were similar in
nature to what we experienced in 2005 again caused criadakés (this time in the qualifying
event). As in 2005, the failure occurred in a situation thaswot well-reflected in our testing and
preparations.

The root cause for the fragilities in our system was lack wietiand experience required to
develop the software required for the Urban Challenge. Ogiral schedule planned on having
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a fully functional system two months prior to the race, ailogvample time for testing and tuning.
In reality, this point of technical progress was only reatapproximately 2 weeks before the race,
which meant that we were not able to test the software in a eiarigh variety of situations to
uncover some of the bugs and performance issues.

At a high level, the software architecture that was develaggpears to be capable of perform-
ing autonomous operations at the level required for urbasingdr. With the exception of errors in
robustly detecting stop lines, the sensing subsystem peeid well and was extremely capable.
The planning subsystem was more brittle and the finite statehine used to control the overall
functioning of the planner proved to be difficult to verifycamodify.

7.2 Technical Contributions and Transitions

Technical Contributions. Through this contact, the following technical contribuigchave been
accomplished:

New technologies for mission and contingency manages#edirective/response based architec-
ture was developed to provide the ability to reason aboutpbexnuncertain, spatio-temporal en-
vironments and to make decisions that enable autonomowssomsésto be accomplished safely and
efficiently, with ample contingency planning. Building onpextise in high confidence decision-
making and autonomous mission management at JPL, algarittere developed to control the
vehicle’s sensing, estimation, mapping, planning androbisystems in complex and uncertain
conditions, while also ensuring safe operations.

Distributed sensor fusion, mapping, and situational awassnBuilding on Caltech and JPL expe-
rience in sensory-based navigation—including featuresti@ation and tracking, moving obstacle
detection and tracking, visual odometry, and sensoryebasspping and localization—we devel-
oped a multi-layer decomposition of our sensed environreenhat different levels of navigation
and contingency management algorithms could operate allplwhile providing highly robust
and safe operation. These modules operated in a highlybdittd computational architecture.

Real-time, optimization-based navigatiowe developed an optimization-based approach to guid-
ance, navigation and control (GNC) that allows our vehiclglam and execute locally optimal
paths using a sensor-driven description of its environmiemis approach was able to handle such
issues as moving vehicles, traffic laws and defensive dyivin

Transitions. Through this activity, we have established a strong workeigtionship with the
Space Technologies sector of Northrop Grumman, includasgjrtg of advanced algorithms for
motion planning on Alice (outside of the DGC program). Weas® in discussions with the Sys-
tems Integration sector of Northrop Grumman regarding tinéerest in developing autonomous
vehicle technologies for airport operations.

In addition, Caltech is currently supported under a MultighBnary University Research Ini-
tiative (MURI) grant in “Specification, Design and Verificari of Distributed Embedded Systems”
which will make use of our 2007 Urban Challenge experiencd @amr experimental platform) to
pursue research in formal verification methods for com@expnomous systems such as Alice.
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A Additional Software Modules

In addition to the software modules described in the maih texiumber of other modules were
used as part of our system. Those modules are briefly deddrdre.

ASim. Asimis a dynamic simulator for Alice that replaces the a&stabdule. It accepts comments
from gcdrive, simuilates the dynamics of the vehicle (inlihg wheel slippage), and broadcasts
the current vehicle state in a format compatible with astate

Cotk. CoTK (Console Tool Kit) is a very basic display toolkit for teednsoles. Implemented as
a very thin layer over ncurses.

Circle Planner. The circle planner was one of two backup planners for theruaisired regions.
This planner also constructed a graph from a family of cur¥é® curves considered in this case
was circular arcs and straight line segments. This was #ifbiysplanner, and did not incorporate
cost from the cost map. It considered obstacles as hardraarist The graph search was done
with an A* algorithm. This planner was very fast, and prodlidgnamically feasible solutions,
but the solutions looked rather crude due to the family ozesirused, which could easily have
been remedied. This planner was tested but not used in the rac

DPlanner. An optimization-based planner was developed based on thefuBlURBS basis
functions combined with differential flatness, as desdilvethe original proposal. This planner
relied on a set of proprietary optimization algorithms twate developed by Northrop Grumman.
The planner solves the complete spatio-temporal problesnisathus capable of accounting for
the dynamic obstacles in the environment explicitly. Thenpler operated on a cost map, but also
enforced hard constraints for obstacles. The solutioniodda(a trajectory) satisfies the dynamics
of the vehicle, as well as constraints on the inputs and efaddice, while minimizing some cost
function. The NURBS-based planner was not able to executdlgueaough to run in real-time,
and so a rail-based planner was developed to replace it. glaerer module was not used in the
race.

MapViewer. A lightweight 2-D map and map object viewer built using FLTMapviewer can be
used to visualize map elements sent in and out of the mappeulmo

RNDF-editor. A JAVA GUI program for editing RNDF files.

Skynet. The skynet library is used for group communications in Alites a fairly thin wrapper
around Spread. It supports broadcasting of messages t@a greup name and subscribing to
groups to receive relevant messages.

Sparrow. Sparrow is a collection of programs and a library of C fune$iantended to aid in the
implementation of real-time controllers on Linux-basedadacquisition and control systems. It
contains functions for executing control algorithms at adixate, communicating with hardware
interface cards, and displaying data in real-time. For t&CDthe real-time data display was the
primary usage.
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Attachment: Intellectual Property

Team Caltech made use of the OTGX software package developaatthrop Grumman, which
was licensed to Caltech for use in the Urban Challenge. Basedromgplanning activities after
the site visit, we dropped OTG from our system architecture imstead used the rail-planner
software described in the final report (and provided to DARBAaleliverable). Extensions of
the OTGX algorithm funded through the DARPA contract (beftire site visit) are provided to
DARPA as part of the source code. Table 4 summarizes theantedl| property claims.

Table 4: Noncommercial intellectual property

IP Component Basis for Assertion Category Organization
OTGX software| Developed exclusively at private expensRestricted| Northrop Grummar
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